Search results for "Feature vector"
showing 10 items of 77 documents
A novel method for network intrusion detection based on nonlinear SNE and SVM
2017
In the case of network intrusion detection data, pre-processing techniques have been extensively used to enhance the accuracy of the model. An ideal intrusion detection system (IDS) is one that has appreciable detection capability overall the group of attacks. An open research problem of this area is the lower detection rate for less frequent attacks, which result from the curse of dimensionality and imbalanced class distribution of the benchmark datasets. This work attempts to minimise the effects of imbalanced class distribution by applying random under-sampling of the majority classes and SMOTE-based oversampling of minority classes. In order to alleviate the issue arising from the curse…
Analysis of pattern recognition by man using detection experiments.
1981
This paper addresses the problem of analyzing biological pattern recognition systems. As no complete analysis is possible due to limited observability, the theoretical part of the paper examines some principles of construction for recognition systems. The relations between measurable and characteristic variables of these systems are described. The results of the study are: 1. Human recognition systems can always be described by a model consisting of an analyzer (FA) and a linear classifier. 2. The linearity of the classifier places no limits on the universal validity of the model. The principle of organization of such a system may be put into effect in many different ways. 3. The analyzer f…
A support vector domain method for change detection in multitemporal images
2010
This paper formulates the problem of distinguishing changed from unchanged pixels in multitemporal remote sensing images as a minimum enclosing ball (MEB) problem with changed pixels as target class. The definition of the sphere-shaped decision boundary with minimal volume that embraces changed pixels is approached in the context of the support vector formalism adopting a support vector domain description (SVDD) one-class classifier. SVDD maps the data into a high dimensional feature space where the spherical support of the high dimensional distribution of changed pixels is computed. Unlike the standard SVDD, the proposed formulation of the SVDD uses both target and outlier samples for defi…
A one class KNN for signal identification: a biological case study
2009
The paper describes an application of a one class KNN to identify different signal patterns embedded in a noise structured background. The problem becomes harder whenever only one pattern is well-represented in the signal; in such cases, one class classifier techniques are more indicated. The classification phase is applied after a preprocessing phase based on a multi layer model (MLM) that provides preliminary signal segmentation in an interval feature space. The one class KNN has been tested on synthetic and real (Saccharomyces cerevisiae) microarray data in the specific problem of DNA nucleosome and linker regions identification. Results have shown, in both cases, a good recognition rate.
A Clustering Approach to texture Classification
1988
In the paper a clustering technique to segment an image in to “homogeneous” regions is studied. The homogeneity of each region is evaluated by means of a “proximity function” computed between the pixels. The main result of such approach is that no-histogramming is required in order to perform segmentation. Possibilistic and probabilistic approaches are, also, combined to evaluate the significativity of the computed regions.
Mammographic images segmentation based on chaotic map clustering algorithm
2013
Background: This work investigates the applicability of a novel clustering approach to the segmentation of mammographic digital images. The chaotic map clustering algorithm is used to group together similar subsets of image pixels resulting in a medically meaningful partition of the mammography. Methods: The image is divided into pixels subsets characterized by a set of conveniently chosen features and each of the corresponding points in the feature space is associated to a map. A mutual coupling strength between the maps depending on the associated distance between feature space points is subsequently introduced. On the system of maps, the simulated evolution through chaotic dynamics leads…
Least-squares community extraction in feature-rich networks using similarity data
2021
We explore a doubly-greedy approach to the issue of community detection in feature-rich networks. According to this approach, both the network and feature data are straightforwardly recovered from the underlying unknown non-overlapping communities, supplied with a center in the feature space and intensity weight(s) over the network each. Our least-squares additive criterion allows us to search for communities one-by-one and to find each community by adding entities one by one. A focus of this paper is that the feature-space data part is converted into a similarity matrix format. The similarity/link values can be used in either of two modes: (a) as measured in the same scale so that one may …
A time domain triangle method approach to estimate actual evapotranspiration: Application in a Mediterranean region using MODIS and MSG-SEVIRI produc…
2016
Abstract In this study, spatially distributed estimates of regional actual evapotranspiration (ET) were obtained using a revised procedure of the so called “triangle method” to parameterize the Priestley–Taylor ϕ coefficient. In the procedure herein proposed, named Time-Domain Triangle Method (TDTM), the triangular feature space was parameterized considering pairs of T s –VI values obtained by exploring, for each pixel, only their temporal dynamics. This new method was developed using time series products provided by MODIS and MSG-SEVIRI sensors. Moreover the proposed procedure does not depend on ancillary data, and it is only based on remotely sensed vegetation indices and day–night time l…
Why is this an anomaly? Explaining anomalies using sequential explanations
2022
Abstract In most applications, anomaly detection operates in an unsupervised mode by looking for outliers hoping that they are anomalies. Unfortunately, most anomaly detectors do not come with explanations about which features make a detected outlier point anomalous. Therefore, it requires human analysts to manually browse through each detected outlier point’s feature space to obtain the subset of features that will help them determine whether they are genuinely anomalous or not. This paper introduces sequential explanation (SE) methods that sequentially explain to the analyst which features make the detected outlier anomalous. We present two methods for computing SEs called the outlier and…
Forest of Normalized Trees: Fast and Accurate Density Estimation of Streaming Data
2018
Density estimation of streaming data is a relevant task in numerous domains. In this paper, a novel non-parametric density estimator called FRONT (forest of normalized trees) is introduced. It uses a structure of multiple normalized trees, segments the feature space of the data stream through a periodically updated linear transformation and is able to adapt to ever evolving data streams. FRONT provides accurate density estimation and performs favorably compared to existing online density estimators in terms of the average log score on multiple standard data sets. Its low complexity, linear runtime as well as constant memory usage, makes FRONT by design suitable for large data streams. Final…